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SIMPLE AND EFFICIENT ENTRIES TO THE BASIC CARBON SKELETONS OF SOME KINDS

OF TERPENOIDS FROM A FUNCTIONALIZED TRICYCLO[6.3.1.03'8]DODEC—4—ENE
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The basic carbocyclic frameworks of stemodane, cedrane, hydro-
azulene, and himachalene type terpenoids are newly synthesized from
a common tricyclic ketone, which is readily obtained via an intra-
molecular Diels-Alder reaction of a trienone, by simple manipulations.

1)

In our previous report we have described a stereoselective intramolecular

Diels-Alder reaction of several trienones (e.g. 5) into functionalized tricyclol[6.3.

3,8

1.0 Jdodec-4-enes (e.g. 6), which would be a useful and common synthon for assem-

bling basic carbocyclic frameworks of various kinds of natural products. We now

wish to report the new methods for constructing some kinds of terpenoids carbon

2) 3)

skeletons, e.g. stemodane (1), cedrane (3),3) hydroazulene (3), and himachalene

(g),3) from the tricyclic ketone (6) as a common precursor.

The starting tricyclic ketone (§)4)

was synthesized stereoselectively from the
acetate (5) via an intramolecular Diels-Alder reaction (40 mmol solution in mesity-

lene using a sealed tube, 220 °C, 50 h) followed by a basic hydrolysis [o~/B-OH =

12.0 : 2.6, 23%] (Scheme 1). 0 0
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Scheme 1.
Sequential hydrogenation, ketalization, and Swern oxidation of the keto alco-
5,6)

[89% from the B-OH isomer and 86% from the
7)

hol (6) provided the keto ketal (8)

a-isomer], which was then submitted to the conditions of Robinson type annulation

8)

to give the enone (1), with stemodane carbon skeleton, as a single product in 76%
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yield. The B configuration at C-5H (steroid numbering) in 1 could be deduced from
the use of a thermodynamic equilibration conditiong) for the final aldol condensa-
tion step.

For assembling the cedrane skeleton (2), it is necessary to contract the cyclo-
hexanone part in 8 to five membered ring. To this purpose, the keto ketal (8) was

10) [70%] by the diazo transfer procedure, then

1)

transformed to the diazoketone (9)

the methanol solution of 9 was photolized1 at 0 °C for 3 h to afford the desired

ester (3)12) in 81% yield, stereoselectively. In order to convert the ester (2) to

the hydroazulene (3) we resorted to a cleavage of the C-C bond between C-7 and C-11

3)

in 2 via Baeyer-Villiger oxidation.l Hydrolysis of the ketal of 2 followed by m-

chloroperbenzoic acid treatment in the presence of lithium carbonate afforded the

lactone (10)%%

)15)

[83%] as a sole product, which was then converted to the diacetate

(3

[65%] by sequential lithium aluminum Hydride reduction and acetylation. The
successful conversion of 3 into the corresponding acetonide (ll)lG) by a standard
method implied that the configuration of carbomethoxy group at C-6 in 2 should be

B orientation.

7)

Finally, in the analogous way, the a-OH isomer1

)

of the ketone (6) was trans-
formed into the himachalene skeleton (2)18 via a 5-step synthetic sequence [41%
overall] as shown in Scheme 2.

Thus, we have demonstrated that the tricyclo[G.3.1.03’8]dodec—4—ene derivative
(6) can be efficiently transformed into the four kinds of terpenoids carbon skele-
tons by simple manipulations and the tricyclic system can serve as a synthetically
useful synthon.

Further application of this methodology to the synthesis of natural products
is being pursued.
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Scheme 2.
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